Blogia
arturodelgadofisica2

Tareas Jabil B Lunes

ACUSTICA

ACUSTICA (ciencia) (del griego akouein, ’oír’), término empleado en ocasiones para la ciencia que se ocupa del sonido en su conjunto. Generalmente suele usarse para referirse a la acústica arquitectónica, la rama especial de esta ciencia que trata de la construcción de zonas cerradas, de forma que se logre una buena audición de las palabras o la música.

La acústica de edificios es un aspecto del estudio del sonido que no se desarrolló hasta una época relativamente reciente. En el siglo I a.C., el arquitecto romano Vitrubio realizó algunas observaciones pertinentes sobre el tema y aventuró hipótesis ingeniosas en relación con la reverberación y la interferencia. Sin embargo, el primero en tratar en profundidad los aspectos científicos de este tema fue el físico estadounidense Joseph Henry, en 1856 y en 1900 su compatriota Wallace Sabine avanzó más en el estudio de la materia.

2. PROBLEMAS DE DISEÑO

El sonido se desplaza de forma muy distinta en interiores y al aire libre. En un gimnasio, por ejemplo, los bancos, las paredes y el techo hacen que las ondas sonoras reboten o reverberen. Al aire libre, el sonido parece menos intenso porque hay menos obstáculos que reflejen las ondas.

El diseño acústico tiene que tener en cuenta que, además de las peculiaridades fisiológicas del oído, en la audición intervienen también peculiaridades psicológicas. Por ejemplo, los sonidos no familiares parecen poco naturales. El sonido producido en una habitación normal se ve algo modificado por las reverberaciones debidas a las paredes y los muebles; por esta razón, un estudio de radio o televisión debe tener un grado de reverberación moderado para conseguir una reproducción natural del sonido. Para lograr las mejores cualidades acústicas, las salas deben diseñarse de forma que reflejen el sonido lo suficiente para proporcionar una calidad natural, sin que introduzcan una reverberación excesiva en ninguna frecuencia, sin que provoquen ecos no naturales en determinadas frecuencias y sin que produzcan interferencias o distorsiones no deseables.

El tiempo que necesita un sonido para disminuir su intensidad original un millón de veces se denomina tiempo de reverberación. Un tiempo de reverberación apreciable mejora el efecto acústico, especialmente para la música; en un auditorio, un sonido intenso debe oírse ligerísimamente durante uno o dos segundos después de que su fuente haya dejado de emitirlo. En una vivienda, es deseable un tiempo de reverberación más corto pero detectable.

3. MATERIALES

Para modificar las reverberaciones, el arquitecto cuenta con dos tipos de materiales para cubrir las superficies de una habitación: los que reflejan el sonido y los que lo absorben. Los materiales blandos como el corcho o el fieltro absorben la mayor parte del sonido que incide sobre ellos, aunque pueden reflejar algunos sonidos de baja frecuencia. Los materiales duros como la piedra o los metales reflejan casi todo el sonido que les llega. La acústica de un auditorio de grandes dimensiones puede ser muy distinta cuando está lleno y cuando está vacío: los asientos vacíos reflejan el sonido, mientras que el público lo absorbe.

En la mayoría de los casos, la acústica de una sala resulta satisfactoria si se logra un balance adecuado entre los materiales absorbentes y reflectantes de sonido. Frecuentemente pueden producirse ecos molestos en una sala cuyo tiempo de reverberación general es bueno si el techo, o una pared, tiene forma cóncava y es muy reflectante; en esos casos, es posible que el sonido se concentre en un punto determinado y haga que la acústica sea mala en esa zona. Igualmente, un pasillo estrecho entre dos paredes reflectantes paralelas puede atrapar el sonido por reflexiones repetidas y provocar ecos desagradables, aunque la absorción general sea suficiente. También hay que prestar atención a la eliminación de interferencias. Las interferencias se producen por la diferencia entre las distancias recorridas por el sonido directo y el sonido reflejado, y produce las llamadas zonas muertas, donde ciertas gamas de frecuencia quedan eliminadas. La reproducción de sonido captado por micrófonos también exige la eliminación de ecos e interferencias.

4. AISLAMIENTO

Otro aspecto importante de la acústica de una sala es el aislamiento de los sonidos no deseados. Esto se logra sellando cuidadosamente cualquier rendija que pueda dejar pasar el sonido, empleando paredes gruesas y construyendo varios tabiques no unidos y separados por cámaras de aire.

Para evaluar las propiedades acústicas de las salas y los materiales, los científicos emplean instrumentos como las cámaras anecoicas o los medidores de nivel de sonido. La cámara anecoica es una habitación libre de ecos y reverberaciones, en la que todo el sonido es absorbido por pirámides de fibra de vidrio colocadas en la superficie de las paredes y el techo. Un medidor de nivel de sonido mide la sensación sonora o intensidad fisiológica, que no es proporcional a la intensidad física (flujo de energía por unidad de tiempo). El medidor expresa el resultado en decibelios (dB), una unidad logarítmica que se define a partir de cierta intensidad física umbral, I0, de tal forma que el número de decibelios de un sonido de intensidad I es: nº dB = 10 lg (I/I0). En una vivienda tranquila, un medidor de sonido marcaría unos 38 dB; una conversación normal aumentaría el valor hasta unos 70 dB; una alarma antiaérea puede alcanzar unos 150 dB; un avión a reacción, unos 120 dB. Cuando la intensidad física de un sonido se duplica, la sensación sonora aumenta en unos 3 dB; cuando se cuadruplica, en unos 6 dB,... Los niveles de volumen, que dependen subjetivamente del oyente, se miden en unidades llamadas sonios y fonios.

 

http://www.arquitectuba.com.ar

 



En este tema nos damos cuenta que la acústica se mide en decibelios y que se puede diseñar el hogar  de manera que los altos ruidos del exterior queden aislados para que  no afecten nuestros oídos cuando nos encontramos dentro de la casa en cualquier habitación.

TEMPERATURA

  • TEMPERATURA    La temperatura es la medida de la cantidad de energía térmica poseída por un objeto.

 

  • Galileo desarrolló el primero instrumento para medir la temperatura, fue refinado y calibrado por científicos subsiguientes.

 

  • Las escalas Fahrenheit, Celsius y Kelvin son tres diferentes sistemas para la medición de energía térmica (temperatura) basada en diferentes referencias.

 

Medir la temperatura es relativamente un concepto nuevo. Los primeros científicos entendían la diferencia entre ’frío’ y ’caliente’, pero no tenían un método para cuantificar los diferentes grados de calor hasta el siglo XVII. En 1597, el astrónomo Italiano Galileo Galilei inventó un simple termoscopio de agua, un artificio que consiste en un largo tubo de cristal invertido en una jarra sellada que contenía agua y aire. Cuando la jarra era calentada, el aire se expandía y empujaba hacia arriba el líquido en el tubo. El nivel del agua en el tubo podía ser comparado a diferentes temperaturas para mostrar los cambios relativos cuando se añadía o se retiraba calor, pero el termoscopio no permitía cuantificar la temperatura fácilmente.

Varios años después, el físico e inventor Italiano Santorio Santorio mejoró el diseño de Galileo añadiendo una escala numérica al termoscopio. Estos primeros termoscopios dieron paso al desarrollo de los termómetros llenos de líquido comúnmente usados hoy en día. Los termómetros modernos funcionan sobre la base de la tendencia de algunos líquidos a expandirse cuándo se calientan. Cuando el fluido dentro del termómetro absorbe calor, se expande, ocupando un volumen mayor y forzando la subida del nivel del fluido dentro del tubo. Cuando el fluido se enfría, se contrae, ocupando un volumen menor y causando la caída del nivel del fluido.

La temperatura es la medida de la cantidad de energía de un objeto (Ver la lección sobre Energía para saber más sobre este concepto). Ya que la temperatura es una medida relativa, las escalas que se basan en puntos de referencia deben ser usadas para medir la temperatura con precisión. Hay tres escalas comúnmente usadas actualmente para medir la temperatura: la escala Fahrenheit (°F), la escala Celsius (°C), y la escala Kelvin (K). Cada una de estas escalas usa una serie de divisiones basadas en diferentes puntos de referencia tal como se describe enseguida.

Fahrenheit

Daniel Gabriel Fahrenheit (1686-1736) fue un físico alemán que inventó el termómetro de alcohol en 1709 y el termómetro de mercurio en 1714. La escala de temperatura Fahrenheit fue desarrollada en 1724. Originalmente, Fahrenheit estableció una escala en la que la temperatura de una mezcla de hielo-agua-sal estaba fijada a 0 grados. La temperatura de una mezcla de hielo-agua (sin sal) estaba fijada a 30 grados y la temperatura del cuerpo humano a 96 grados. Usando esta escala, Fahrenheit midió la temperatura del agua hirviendo a 212°F en su propia escala. Más tarde, Fahrenheit ajustó el punto de congelamiento del agua hirviendo de 30°F a 32°F, haciendo que el intervalo entre el punto de ebullición y el de congelamiento del agua fuera de 180 grados (y haciendo que la temperatura del cuerpo fuese la familiar de 98.6°F). Hoy en día, la escala Fahrenheit sigue siendo comúnmente usada en Estados Unidos.

Celsius

Anders Celsius (1701-1744) fue un astrónomo suizo que inventó la escala centígrada en 1742. Celsius escogió el punto de fusión del hielo y el punto de ebullición del agua como sus dos temperaturas de referencia para dar con un método simple y consistente de un termómetro de calibración. Celsius dividió la diferencia en la temperatura entre el punto de congelamiento y de ebullición del agua en 100 grados (de ahí el nombre centi, que quiere decir cien, y grado). Después de la muerte de Celsius, la escala centigrada fue llamanda escala Celsius y el punto de congelamiento del agua se fijo en 0°C y el punto de ebullición del agua en 100°C. La escala Celsius toma precedencia sobre la escala Fahrenheit en la investigación científica porque es más compatible con el formato basado en los decimales del Sistema Internacional (SI) del sistema métrico. Además, la escala de temperatura Celsius es comúnmente usada en la mayoría de paises en el mundo, aparte de Estados Unidos.

Kelvin

La tercera escala para medir la temperatura es comúnmente llamada Kelvin (K). Lord William Kelvin (1824-1907) fue un físico Escosés que inventó la escala en 1854. La escala Kelvin está basada en la idea del cero absoluto, la temperatura teóretica en la que todo el movimiento molecular se para y no se puede detectar ninguna energía (ver la Lección de Movimiento). En teoría, el punto cero de la escala Kelvin es la temperatura más baja que existe en el universo: -273.15ºC. La escala Kelvin usa la misma unidad de división que la escala Celsius. Sin embargo vuelve a colocar el punto zero en el cero absoluto: -273.15ºC. Es así que el punto de congelamiento del agua es 273.15 Kelvins (las graduaciones son llamadas Kelvins en la escala y no usa ni el término grado ni el símbolo º) y 373.15 K es el punto de ebullición del agua. La escala Kelvin, como la escala Celsius, es una unidad de medida estandard del SI, usada comúnmente en las medidas científicas. Puesto que no hay números negativos en la escala Kelvin (porque teóricamente nada puede ser más frío que el cero absoluto), es muy conveniente usar la escala Kelvin en la investigación científica cuando se mide temperatura extremadamente baja.

Nos damos cuenta de la importancia de los instrumentos de medición que inventaron estas personas y que en la actualidad son de gran ayuda para medir la temperatura en las tres diferentes escalas.

 

http://www.visionlearning.com/library/module_viewer.

Fuentes de informacion

Mi fuente de información fue http//www.wikipedia.com.mx

Temperatura. Erika Marlen Santillan.

LA TEMPERATURA.

¿Qué es?

Todos sabemos intuitivamente de qué estamos hablando. Por medio del tacto notamos la temperatura al tocar un cuerpo ya que unas terminaciones nerviosas situadas en la piel se encargan de ello.

Toda la materia está formada por partículas en continua agitación:. incluso los sólidos, que a simple vista parecen estar en reposo, la tienen.

En los sólidos las vibraciones son pequeñas. Si la energía de agitación es muy grande, se pueden llegar a romper los enlaces entre las moléculas y entre los átomos.

Las partículas se desenlazan y vibran libres, rotan, chocan entre si y contra las paredes del recipiente.

La temperatura no depende del número de partículas que se mueven sino de su velocidad media: a mayor temperatura mayor velocidad media. No depende por tanto de la masa total del cuerpo: si dividimos un cuerpo con una temperatura "T" en dos partes desiguales las dos tienen la misma temperatura.

La temperatura es una magnitud que refleja el nivel térmico de un cuerpo (su capacidad para ceder energía calorífica) y el calor es la energía que pierde o gana en ciertos procesos (es un flujo de energía entre dos cuerpos que están a diferentes temperaturas).

Nivel térmico es el nivel de agitación. Comparando los niveles térmicos sabemos hacia donde fluye el calor.

La temperatura refleja el nivel térmico de un cuerpo e indica el sentido en que fluye el calor.

La temperatura está relacionada con la presión.

¿Cómo se mide la temperatura?

Nuestro tacto detecta la temperatura, pero carece de la capacidad de medirla con rigor.

mano en agua

Realizando esta experiencia lo comprenderás:

Introduce una mano en un recipiente frío y la otra en uno caliente, y luego las dos manos juntas en otro recipiente con agua templada.

La primera mano la encontrará caliente y la otra fría.

Del cuerpo que está a mayor temperatura decimos que "está más caliente" y a veces, erróneamente, se dice "que tiene más calor". Los cuerpos no tienen calor, tienen energía interna y tienen temperatura. Reservamos el término "calor" para la energía que se transfiere de un cuerpo a otro. Esta energía es fácil de medir, pero la energía total que tiene el cuerpo no.

Si un cuerpo recibe energía calorífica aumenta la agitación de las partículas que lo forman (átomos, moléculas o iones) y se pueden producir también cambios en la materia: dilatación, cambios de color (piensa en una barra de metal al calentarla), variación de su resistencia a la conducción, etc. Estos cambios se pueden utilizar para hacer una escala de temperatura.

Al poner en contacto dos sustancias la agitación de las partículas de una se transmite, mediante choques, a las partículas de la otra hasta que se igualan sus velocidades. Las partículas de la sustancia más caliente son más rápidas y poseen más energía. En cada impacto ceden parte de la energía a las partículas más lentas con las que entran en contacto. Las partículas de la sustancia que está a mayor T se frenan un poco, pero al mismo tiempo hacen que la más lentas aceleren.

Finalmente las partículas de las dos sustancias alcanzan la misma velocidad media y por lo tanto la misma temperatura: se alcanza el "equilibrio térmico".

Para diseñar un instrumento que mida la temperatura debemos escoger una cualidad de la materia que sea fácilmente observable, que varíe de manera importante con la agitación de sus partículas, que sea fácil de medir y que nos permita relacionar su variación con la agitación que tiene el cuerpo.

La cualidad elegida en los termómetros de mercurio es la dilatación, pero existen otros tipos de termómetros basados en otras cualidades.

Se utiliza el mercurio para construir termómetros porque es un metal que es líquido entre -20 ºC y 100ºC y porque se dilata mucho. Encerramos el metal dentro de un tubo fino (capilar) para que al dilatarse un poco avance mucho por el tubo (cuanto más fino sea el tubo más centímetros avanza). Midiendo longitudes de la columna podemos establecer una relación entre la dilatación y el nivel de agitación de la sustancia a medir.

 

termometro mercurio

¡Medimos la temperatura midiendo una longitud!

Se pueden tomar como base para medir las temperaturas otras propiedades que cambien con ella como el color, la resistencia eléctrica, etc. Aparatos basados en las anteriores propiedades son el pirómetro óptico, el termopar....

Esto posibilita el medir en distintos rangos de temperaturas. Piensa en lo que pasaría si midieras la temperatura de un alto horno con un termómetro de mercurio.

Yo opino.

La temperatura se obtiene de la agitación de las partículas de cada cuerpo. la gente se confunde al decir "el niño tiene temperatura" todos tenemos temperatura!!!! ya sea mayor o menor y a lo que la gente se refiere al decir esto es ala fiebre.

 

 


Óptica. Angelica Ramos

Óptica.

EL SENTIDO de la visión es el medio de comunicación con el mundo exterior más importante que tenemos, lo que quizá pueda explicar por qué la óptica es una de las ramas más antiguas de la ciencia. En broma podríamos decir que la óptica comenzó cuando Adán vio a Eva por primera vez, aunque más seriamente podemos afirmar que tan pronto el hombre tuvo conciencia del mundo que habitaba se comenzó a percatar de muchos fenómenos luminosos a su alrededor, el Sol, las estrellas, el arco iris, el color del cielo a diferentes horas del día, y muchos otros. Estos fenómenos sin duda despertaron su curiosidad e interés, que hasta la fecha sigue sin saciarse completamente.

Antes de hablar de óptica conviene saber lo que ésta es. En forma estricta, podemos definir la óptica de acuerdo con la convención de la Optical Society of America, para la cual es el estudio de la luz, de la manera como es emitida por los cuerpos luminosos, de la forma en la que se propaga a través de los medios transparentes y de la forma en que es absorbida por otros cuerpos. La óptica, al estudiar los cuerpos luminosos, considera los mecanismos atómicos y moleculares que originan la luz. Al estudiar su propagación, lógicamente estudia los fenómenos luminosos relacionados con ella, como la reflexión, la refracción, la interferencia y la difracción. Finalmente, la absorción de la luz ocurre cuando la luz llega a su destino, produciendo ahí un efecto físico o químico, por ejemplo, en la retina de un ojo, en una película fotográfica, en una cámara de televisión, o en cualquier otro detector luminoso.

Sin embargo, con el fin de que la definición de la óptica quedara completa, la siguiente pregunta lógica sería: ¿qué es la luz? En forma rigurosa, aún no se tiene una respuesta completamente satisfactoria a esta pregunta, aunque sí podemos afirmar de manera muy general y elemental que la luz es esa radiación que al penetrar a nuestros ojos produce una sensación visual.

Por otro lado, más científicamente, sabemos que la luz es una onda electromagnética idéntica a una onda de radio, con la única diferencia de que su frecuencia es mucho mayor y por lo tanto su longitud de onda es mucho menor. Por ejemplo, la frecuencia de la luz amarilla es 5.4 x 108 MHz, a la que le corresponde una longitud de onda de 5.6 x 10-5cm. En el cuadro 1 se comparan las longitudes de onda de la luz con las de las demás ondas electromagnéticas. Según los instrumentos que se usen para observarlas, decimos que están en el dominio electrónico, óptico, o de la física de altas energías.

En un sentido mucho más amplio, se considera frecuentemente óptica al estudio y manejo de las imágenes en general, aunque éstas no hayan sido necesariamente formadas con luz o métodos ópticos convencionales. Éste es el caso del procesamiento digital de imágenes o de la tomografia computarizada, de las que hablaremos en la sección sobre procesamiento digital de imágenes.

La óptica, desde que se comenzó a estudiar seriamente, ha desempeñado un papel muy importante en el desarrollo del conocimiento científico y de la tecnología. Los principales avances de la física de nuestro siglo, como la teoría cuántica, la relatividad o los láseres tienen su fundamento o comprobación en algún experimento óptico. Por otro lado, también los grandes avances tecnológicos, como las modernas comunicaciones por fibras ópticas, las aplicaciones de los láseres y de la holografía tienen una base óptica. 

Yo opino que la óptica es una de las ciencias mas importantes por que de esta menara se han descubierto muchas cosas que han sido beneficiarias para el desarrollo de la humanidad.


Acústica. Cesar Omar Perez Magaña.

Acústica

La acústica es una rama de la física interdisciplinaria que estudia el sonido, infrasonido y ultrasonido, es decir ondas mecánicas que se propagan a través de la materia (tanto sólida como líquida o gaseosa) (no se propagan en el vacío) por medio de modelos físicos y matemáticos. A efectos prácticos, la acústica estudia la producción, transmisión, almacenamiento, percepción o reproducción del sonido. La ingeniería acústica es la rama de la ingeniería que trata de las aplicaciones tecnológicas de la acústica.

La acústica considera el sonido como una vibración que se propaga generalmente en el aire a una velocidad de 343 m/s (aproximadamente 1 km cada 3 segundos), ó 1.235 km/h en condiciones normales de presión y temperatura (1 atm y 20 °C).

Archivo:Rfel vsesmer front.png
(Arriba) Fuente de sonido omnidireccional en una camara anecoica.

Historia.

La Acústica tiene su origen en la Antigua Grecia y Roma, entre los siglos VI a. C. y I d. C. Comenzó con la música, que se venía practicando como arte desde hacía miles de años, pero no había sido estudiada de forma científica hasta que Pitágoras se interesó por la naturaleza de los intervalos musicales. Quería saber por qué algunos intervalos sonaban más bellos que otros, y llegó a respuestas en forma de proporciones numéricas. Aristóteles (384 a 322 a. C.) comprobó que el sonido consistía en contracciones y expansiones del aire "cayendo sobre y golpeando el aire próximo", una buena forma de expresar la naturaleza del movimiento de las ondas. Alrededor del año 20 a. C., el arquitecto e ingeniero romano Vitruvio escribió un tratado sobre las propiedades acústicas de los teatros, incluyendo temas como la interferencia, los ecos y la reverberación; esto supuso el comienzo de la acústica arquitectónica.


 

Sobretonos de una cuerda vibratoria. Pitágorasfue el primero en documentar el estudio de este fenómeno.

 

La comprensión de la física de los procesos acústicos avanzó rápidamente durante y después de la Revolución CientíficaGalileo (1564-1642) y Mersenne (1588-1648) descubrieron de forma independiente todas las leyes de la cuerda vibrante, terminando así el trabajo que Pitágoras había comenzado 2000 años antes. Galileo escribió "Las ondas son producidas por las vibraciones de un cuerpo sonoro, que se difunden por el aire, llevando al tímpano del oído un estimulo que la mente interpreta como sonido", sentando así el comienzo de la acústica fisiológica y de la psicológica.

Entre 1630 y 1680 se realizaron mediciones experimentales de la velocidad del sonido en el aire por una serie de investigadores, destacando de entre ellos Mersenne. Mientras tanto,Newton (1642-1727) obtuvo la fórmula para la velocidad de onda en sólidos, uno de los pilares de la física acústica (Principia, 1687).

Ramas.

Las ramas de la acústica son, entre otras:

  • Aeroacústica: generación de sonido debido al movimiento turbulento del aire.
  • Acústica (física): análisis de los fenómenos sonoros mediante modelos físicos y matemáticos.
  • Acústica arquitectónica: estudio del control del sonido, tanto del aislamiento entre recintos habitables, como del acondicionamiento acústico de locales (salas de conciertos, teatros, etc.), amortiguándolo mediante materiales blandos, o reflejándolo con materiales duros.
  • Psicoacústica: estudia la percepción del sonido en humanos, la capacidad para localizar espacialmente la fuente, la calidad observada de los métodos de compresión de audio, etcétera.
  • Bioacústica: estudio de la audición animal (murciélagos, perros, delfines, etc.)
  • Acústica Ambiental: estudio del sonido en exteriores, el ruido ambiental y sus efectos en las personas y la naturaleza, estudio de fuentes de ruido como el tránsito vehicular, ruido generado por trenes y aviones, establecimientos industriales, talleres, locales de ocio y el ruido producido por el vecindario.
  • Acústica subacuática: relacionada sobre todo con la detección de objetos mediante el sonido sonar.
  • Acústica musical: estudio de la producción de sonido en los instrumentos musicales, y de los sistemas de afinación de la escala.
  • Electroacústica: estudia el tratamiento electrónico del sonido, incluyendo la captación (micrófonos y estudios de grabación), procesamiento (efectos, filtrado comprensión, etc.) amplificación, grabación, producción (altavoces), etc.
  • Acústica fisiológica: estudio del funcionamiento del aparato auditivo, desde la oreja a la corteza cerebral.
  • Acústica fonética: análisis de las características acústicas del habla y sus aplicaciones.
  • Macroacústica: estudio de los sonidos extremadamente intensos, como el de las explosiones, turborreactores, entre otros.

OPINION.

En mi opinión, la acústica lo interpreto como la ciencia que estudia cualquier tipo de sonidos y a su vez estos son de ondas que viajan atravez de cualquier materia y pueden ser persividos según el oído de cada ser.

 

 



temperatura jabil b lunes

temperatura jabil b lunes

advierten sobre aumento de la temperatura global

Por: Cruz Loera Molina | 09-Dic-2008 14:56

Los gases de efecto invernadero han ocasionado que en los últimos 50 años la temperatura global haya aumentado 0.13 grados por década.

México, 9 Dic (Notimex).- Los gases de efecto invernadero han ocasionado que en los últimos 50 años la temperatura global haya aumentado 0.13 grados por década, lo que significa que dentro de 100 años estará 1.3 grados por encima del rango normal, alertó el especialista Carlos Gay García.
 
En un comunicado, señaló que el cambio climático es el problema ambiental más importante que enfrenta la humanidad. Según estudios, el calentamiento global a partir del siglo XX ha sido causado por las concentraciones de efecto invernadero ocasionadas por el hombre.
 
Durante su participación en el seminario Colapsos Ecológicos, Sociales y Económicos, el director del Centro de Ciencias de la Atmósfera (CCA) de la Unam expuso que el bióxido de carbono, producido por combustibles fósiles como la gasolina, el petróleo, y el gas natural, contribuyen a las concentraciones de esos gases.
 
Indicó que según el Panel Intergubernamental de Cambio Climático (Ipcc, por sus siglas en inglés) puede decirse, con 90 por ciento de confianza, que el calentamiento global en el siglo pasado se debió a esas concentraciones antropogénicas.
 
Asimismo, señaló que las concentraciones de bióxido de carbono son las más altas de los últimos 800 mil años, y las temperaturas actuales son las más elevadas de los últimos dos mil.
 
Gay García indicó que es necesario que los gobiernos inviertan en investigación y en desarrollo tecnológico para llevar a cabo estudios a profundidad, y que se interesen por este problema.
 
Comentó que la Unam trabaja en un programa nacional de indagación sobre cambio climático, cuyos temas son de importancia tanto para la sociedad en general, como para la comunidad científica.

nosotros nos hemos acabado nuestro planeta la enorme ambicion de hacer bomba nuclares y conquistar territorios   nos han orillados a la generacion futura tener este regalo de clima global                                                                           www chihuahua .com.                                                                                                             

temperatura jabil b lunes

temperatura jabil b lunes

advierten sobre aumento de la temperatura global

Por: Cruz Loera Molina | 09-Dic-2008 14:56

Los gases de efecto invernadero han ocasionado que en los últimos 50 años la temperatura global haya aumentado 0.13 grados por década.

México, 9 Dic (Notimex).- Los gases de efecto invernadero han ocasionado que en los últimos 50 años la temperatura global haya aumentado 0.13 grados por década, lo que significa que dentro de 100 años estará 1.3 grados por encima del rango normal, alertó el especialista Carlos Gay García.
 
En un comunicado, señaló que el cambio climático es el problema ambiental más importante que enfrenta la humanidad. Según estudios, el calentamiento global a partir del siglo XX ha sido causado por las concentraciones de efecto invernadero ocasionadas por el hombre.
 
Durante su participación en el seminario Colapsos Ecológicos, Sociales y Económicos, el director del Centro de Ciencias de la Atmósfera (CCA) de la Unam expuso que el bióxido de carbono, producido por combustibles fósiles como la gasolina, el petróleo, y el gas natural, contribuyen a las concentraciones de esos gases.
 
Indicó que según el Panel Intergubernamental de Cambio Climático (Ipcc, por sus siglas en inglés) puede decirse, con 90 por ciento de confianza, que el calentamiento global en el siglo pasado se debió a esas concentraciones antropogénicas.
 
Asimismo, señaló que las concentraciones de bióxido de carbono son las más altas de los últimos 800 mil años, y las temperaturas actuales son las más elevadas de los últimos dos mil.
 
Gay García indicó que es necesario que los gobiernos inviertan en investigación y en desarrollo tecnológico para llevar a cabo estudios a profundidad, y que se interesen por este problema.
 
Comentó que la Unam trabaja en un programa nacional de indagación sobre cambio climático, cuyos temas son de importancia tanto para la sociedad en general, como para la comunidad científica.

nosotros nos hemos acabado nuestro planeta la enorme ambicion de hacer bomba nuclares y conquistar territorios   nos han orillados a la generacion futura tener este regalo de clima global                                                                           www chihuahua .com.