Blogia

arturodelgadofisica2

Maestro le publique mi trabajo pero por alguna razon no lo publica en la portada si me podria indicar que hacer por favor

Trompo Magico

QUÉ ES LA LEY DE OHM




Contenido:

 

> La Ley de Ohm
Hallar el valor en ohm de una resistencia
Hallar el valor de intensidad de la corriente
Hallar el valor de la tensión o voltaje


LA LEY DE OHM

La Ley de Ohm, postulada por el físico y matemático alemán Georg Simon Ohm, es una de las leyes fundamentales de la electrodinámica, estrechamente vinculada a los valores de las unidades básicas presentes en cualquier circuito eléctrico como son:

 

  1. Tensión o voltaje "E", en volt (V).

  2. Intensidad de la corriente "  I ", en ampere (A).

  3. Resistencia "R" en ohm () de la carga o consumidor conectado al circuito.

  


Circuito eléctrico cerrado compuesto por una pila de 1,5 volt, una resistencia o carga eléctrica "R" y la. circulación de una intensidad  o flujo de corriente eléctrica " I " suministrado por la propia pila.



Debido a la existencia de materiales que dificultan más que otros el paso de la corriente eléctrica a través de los mismos, cuando el valor de su resistencia varía, el valor de la intensidad de corriente en ampere también varía de forma inversamente proporcional. Es decir, a medida que la resistencia aumenta la corriente disminuye y, viceversa, cuando la resistencia al paso de la corriente disminuye la corriente aumenta, siempre que para ambos casos el valor de la tensión o voltaje se mantenga constante.

Por otro lado y de acuerdo con la propia Ley, el valor de la tensión o voltaje es directamente proporcional a la intensidad de la corriente; por tanto, si el voltaje aumenta o disminuye, el amperaje de la corriente que circula por el circuito aumentará o disminuirá en la misma proporción, siempre y cuando el valor de la resistencia conectada al circuito se mantenga constante.


Postulado general de la Ley de Ohm

  


El flujo de corriente en ampere que circula por un circuito eléctrico cerrado, es directamente proporcional a la tensión o voltaje aplicado, e inversamente proporcional a la resistencia en ohm de la carga que tiene conectada.

  


FÓRMULA MATEMÁTICA GENERAL DE REPRESENTACIÓN DE LA LEY DE OHM

Desde el punto de vista matemático el postulado anterior se puede representar por medio de la siguiente Fórmula General de la Ley de Ohm:

 



VARIANTE PRÁCTICA:

Aquellas personas menos relacionadas con el despeje de fórmulas matemáticas pueden realizar también los cálculos de tensión, corriente y resistencia correspondientes a la Ley de Ohm, de una forma más fácil utilizando el siguiente recurso práctico:

 


Con esta variante sólo será necesario tapar con un dedo la letra que representa el valor de la incógnita que queremos conocer y de inmediato quedará indicada con las otras dos letras cuál es la operación matemática que será necesario realizar.

 

1.- Ley de Coulomb.
Una manifestación habitual de la electricidad es la fuerza de atracción o repulsión entre dos cuerpos estacionarios que, de acuerdo con el principio de acción y reacción, ejercen la misma fuerza eléctrica uno sobre otro. La carga eléctrica de cada cuerpo puede medirse en culombios. La fuerza entre dos partículas con cargas q1 y q2 puede calcularse a partir de la ley de Coulomb
Según la cual la fuerza es proporcional al producto de las cargas dividido entre el cuadrado de la distancia que las separa. La constante de proporcionalidad K depende del medio que rodea a las cargas.

2.- Expresión matemática. La ley de Coulomb
Mediante una balanza de torsión, Coulomb encontró que la fuerza de atracción o repulsión entre dos cargas puntuales (cuerpos cargados cuyas dimensiones son despreciables comparadas con la distancia r que las separa) es inversamente proporcional al cuadrado de la distancia que las separa.
El valor de la constante de proporcionalidad depende de las unidades en las que se exprese F, q, q’ y r. En el Sistema Internacional de Unidades de Medida vale 9·10-9 Nm2/C2.
Obsérvese que la ley de Coulomb tiene la misma forma funcional que la ley de la Gravitación Universal

  Maestro lo boletos y la fotos los tiene mariela ella ya se los envio

TROMPO MAGICO

TROMPO MAGICO

LEY DE OHM

La Ley de Ohm afirma que la corriente que circula por un conductor eléctrico es directamente proporcional a la tensión e inversamente proporcional a la resistencia siempre y cuando su temperatura se mantenga constante.

La ecuación matemática que describe esta relación es:

 I= frac{V}{R}

Donde, I es la corriente que pasa a través del objeto en amperios, V es la diferencia de potencial de las terminales del objeto en voltios, y R es la resistencia en ohmios (Ω). Específicamente, la ley de Ohm dice que la R en esta relación es constante, independientemente de la corriente.

Esta ley tiene el nombre del físico alemán Georg Ohm, que en un tratado publicado en 1827, halló valores de tensión y corriente que pasaba a través de unos circuitos eléctricos simples que contenían una gran cantidad de cables. Él presentó una ecuación un poco más compleja que la mencionada anteriormente para explicar sus resultados experimentales. La ecuación de arriba es la forma moderna de la ley de Ohm.

LEY DE COULOMB

La ley de Coulomb puede expresarse como:

La magnitud de cada una de las fuerzas eléctricas con que interactúan dos cargas puntuales en reposo es directamente proporcional al producto de la magnitud de ambas cargas e inversamente proporcional al cuadrado de la distancia que las separa.

La ley de Coulomb es válida sólo en condiciones estacionarias, es decir, cuando no hay movimiento de las cargas o, como aproximación cuando el movimiento se realiza a velocidades bajas y en trayectorias rectilíneas uniformes. Es por ello que es llamada fuerza electrostática.

En términos matemáticos, la magnitud F ,! de la fuerza que cada una de las dos cargas puntuales q_1 ,! y q_2 ,! ejerce sobre la otra separadas por una distancia d ,! se expresa como:

F = kappa frac{left|q_1 q_2right|}{d^2} ,

Dadas dos cargas puntuales q_1 ,! y q_2 ,! separadas una distancia d ,! en el vacío, se atraen o repelen entre sí con una fuerza cuya magnitud está dada por:

 F = kappa frac{q_1 q_2}{d^2} ,

La Ley de Coulomb se expresa mejor con magnitudes vectoriales:

 bold{F} = frac{1}{4 pi varepsilon}frac{q_1 q_2}{d^2} bold{u}_d = frac{1}{4 pi epsilon} frac{q_1 q_2(bold{d}_2 -bold{d}_1)}{|bold{d}_2-bold{d}_1|^3} ,

donde scriptstyle bold{u}_d ,! es un vector unitario que va en la dirección de la recta que une las cargas, siendo su sentido desde la carga que produce la fuerza hacia la carga que la experimenta.

Al aplicar esta fórmula en un ejercicio, se debe colocar el signo de las cargas q1 o q2, según sean éstas positivas o negativas.

El exponente (de la distancia: d) de la Ley de Coulomb es, hasta donde se sabe hoy en día, exactamente 2. Experimentalmente se sabe que, si el exponente fuera de la forma (2+ delta),!, entonces left | delta right |< 10^{-16} ,!.

Optica

La Óptica es la rama de la física que estudia el comportamiento de la radiación electromagnética, sus características y sus manifestaciones. Abarca el estudio de la reflexión, la refracción, las interferencias, la difracción y la formación de imágenes y la interacción de la radiación con la materia.

Desde el punto de vista físico, la luz es una onda electromagnética. Según el modelo utilizado para la luz, se distingue entre las siguientes ramas, por orden creciente de precisión (cada rama utiliza un modelo simplificado del empleado por la siguiente):

La óptica geométrica: Trata a la luz como un conjunto de rayos que cumplen el principio de Fermat. Se utiliza en el estudio de la transmisión de la luz por medios homogéneos (lentes, espejos), la reflexión y la refracción.

La óptica ondulatoria: Considera a la luz como una onda plana, teniendo en cuenta su frecuencia y longitud de onda. Se utiliza para el estudio de difracción e interferencia.

La óptica electromagnética: Considera a la luz como una onda electromagnética, explicando así la reflectancia y transmitancia, y los fenómenos de polarización y anisotropía.

La óptica cuántica u óptica física: Estudio cuántico de la interacción entre las ondas electromagnéticas y la materia, en el que la dualidad onda-corpúsculo desempeña un papel crucial.

Cuando los fenómenos ondulatorios comienzan a cobrar importancia, como en lapero que no puede explicar la difracción e interferencia, se requiere de la óptica física, que considera a la luz como una onda transversal, teniendo en cuenta su frecuencia y longitud de onda.

La óptica física explica los colores como frecuencias distintas de las ondas luminosas y encuadra la luz visible dentro del marco más general del espectro electromagnético.

 

 

Rayos gamma

Su longitud de onda (lambda) < 0.1Å, donde 1Å (Ångström) es igual a 10-10m. Se originan en las desintegraciones nucleares que emiten radiación gamma. Son radiaciones muy penetrantes y muy energéticas.

Rayos X

Se producen por oscilaciones de los electrones próximos a los núcleos y tienen longitudes de onda entre 0.1Å y 30Å.

Son muy energéticos y penetrantes, dañinos para los organismos vivos, pero se utilizan de forma controlada para los diagnósticos médicos.

Rayos UVA

Se producen por saltos electrónicos entre átomos y moléculas excitados (30Å-4000Å).

El Sol es emisor de rayos ultravioleta, que son los responsables del bronceado de la piel. Es absorbida por la capa de ozono, y si se recibe en dosis muy grandes puede ser peligrosa ya que impiden la división celular, destruyen microorganismos y producen quemaduras y pigmentación de la piel.

Luz visible

Es la pequeña parte del espectro electromagnético a la que es sensible el ojo humano (400nm-750nm).

Se producen por saltos electrónicos entre niveles atómicos y moleculares. Las longitudes de onda que corresponden a los colores básicos son:

    ROJO 	De 6200 a 7500 Å
NARANJA De 5900 a 6200 Å
AMARILLO De 5700 a 5900 Å
VERDE De 4900 a 5700 Å
AZUL De 4300 a 4900 Å
VIOLETA De 4000 a 4300 Å
A travez de esta rama se define entre otras cosas por que es que vemos en
 colores de que manera tambien se engaña
 el ojo y lo que nuestros ojos pueden y lo que no como lo son las ilusiones 
opticas la optica fisica estudia lo relacionado a 
las radiaciones tambien 

Contenido

Apunte de hidrodinámica: Flujos incompresibles y sin rozamiento. Ecuación de Bernoulli. Flujos viscosos. Movimiento laminar y turbulento. Flujos de la capa límite. Flujos compresibles. Viscosidad

DINAMICA DE FLUIDOS O

HIDRODINAMICA

Esta rama de la mecánica de fluidos se ocupa de las leyes de los fluidos en movimiento; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene una importancia práctica mayor que la hidrostática,sólo podemos tratar aquí algunos conceptos básicos.

Euler fue el primero en reconocer que las leyes dinámicas para los fluidos sólo pueden expresarse de forma relativamente sencilla si se supone que el fluido es incompresible e ideal, es decir, si se pueden despreciar los efectos del rozamiento y la viscosidad. Sin embargo, como esto nunca es así en el caso de los fluidos reales en movimiento, los resultados de dicho análisis sólo pueden servir como estimación para flujos en los que los efectos de la viscosidad son pequeños.

a) Flujos incompresibles y sin rozamiento

Estos flujos cumplen el llamado teorema de Bernoulli, que afirma que la energía mecánica total de un flujo incompresible y no viscoso (sin rozamiento) es constante a lo largo de una línea de corriente. Las líneas de corriente son líneas de flujo imaginarias que siempre son paralelas a la dirección del flujo en cada punto, y en el caso de flujo uniforme coinciden con la trayectoria de las partículas individuales de fluido. El teorema de Bernoulli implica una relación entre los efectos de la presión, la velocidad y la gravedad, e indica que la velocidad aumenta cuando la presión disminuye. Este principio es importante para predecir la fuerza de sustentación de un ala en vuelo.

Ecuación de continuidad: (para flujo estacionario e incompresible, sin fuentes ni sumideros, por evaluarse a lo largo de una línea de corriente).

1) Ley de conservación de la masa en la dinámica de los fluidos:

A1.v1 = A2.v2 = constante.

Ley de conservación de la masa en la dinámica de los fluidos

Recordar que p = F/A ÞF = p.A

Flujo de volúmen: (caudal).

Φ = A .v [m ³/s]

Ecuación de Bernoulli: (principio de conservación de la energía) para flujo ideal (sin fricción).

p1 + δ.v1 ²/2 + δ.g.h1 = p2 + δ.v2 ²/2 + δ.g.h2 = constante

p1/δ + v1 ²/2 + g.h1 = p2/δ + v2 ²/2 + g.h2

p/ δ = energía de presión por unidad de masa.

g.h = energía potencial por unidad de masa.

v ²/2 = energía cinética por unidad de masa.

Ecuación de Bernoulli para flujo en reposo: v1 = v2 = 0

p1 + δ.g.h1 = p2 + δ.g.h2

b) Flujos viscosos: movimiento laminar y turbulento

Los primeros experimentos cuidadosamente documentados del rozamiento en flujos de baja velocidad a través de tuberías fueron realizados independientemente por Poiseuille y por Gotthilf Heinrich Ludwig Hagen. El primer intento de incluir los efectos de la viscosidad en las ecuaciones matemáticas se debió a Navier e, independientemente, a Sir George Gabriel Stokes, quien perfeccionó las ecuaciones básicas para los fluidos viscosos incompresibles. Actualmente se las conoce como ecuaciones de Navier-Stokes, y son tan complejas que sólo se pueden aplicar a flujos sencillos. Uno de ellos es el de un fluido real que circula a través de una tubería recta.

El teorema de Bernoulli no se puede aplicar aquí,porque parte de la energía mecánica total se disipa como consecuencia del rozamiento viscoso, lo que provoca una caída de presión a lo largo de la tubería. Las ecuaciones sugieren que, dados una tubería y un fluido determinados, esta caída de presión debería ser proporcional a la velocidad de flujo. Los experimentos demostraron que esto sólo era cierto para velocidades bajas; para velocidades mayores, la caída de presión era más bien proporcional al cuadrado de la velocidad.

Este problema se resolvió cuando Reynolds demostró la existencia de dos tipos de flujo viscoso en tuberías. A velocidades bajas, las partículas del fluido siguen las líneas de corriente (flujo laminar), y los resultados experimentales coinciden con las predicciones analíticas. A velocidades más elevadas, surgen fluctuaciones en la velocidad del flujo, o remolinos (flujo turbulento), en una forma que ni siquiera en la actualidad se puede predecir completamente.

Reynolds también determinó que la transición del flujo laminar al turbulento era función de un único parámetro, que desde entonces se conoce como número de Reynolds. Si el número de Reynolds (que carece de dimensiones y es el producto de la velocidad, la densidad del fluido y el diámetro de la tubería dividido entre la viscosidad del fluido) es menor de 2.000, el flujo a través de la tubería es siempre laminar; cuando los valores son mayores a 3000 el flujo es turbulento. El concepto de número de Reynolds es esencial para gran parte de la moderna mecánica de fluidos.

Los flujos turbulentos no se pueden evaluar exclusivamente a partir de las predicciones calculadas, y su análisis depende de una combinación de datos experimentales y modelos matemáticos; gran parte de la investigación moderna en mecánica de fluidos está dedicada a una mejor formulación de la turbulencia. Puede observarse la transición del flujo laminar al turbulento y la complejidad del flujo turbulento cuando el humo de un cigarrillo asciende en aire muy tranquilo. Al principio, sube con un movimiento laminar a lo largo de líneas de corriente, pero al cabo de cierta distancia se hace inestable y se forma un sistema de remolinos entrelazados.

Ecuación de Bernoulli para flujo real (con fricción)

p1/δ + v1 ²/2 + g.h1 = p2/δ + v2 ²/2 + g.h2 + H0

H0 = perdida de energía por rozamiento desde 1 hasta 2.

c) Flujos de la capa límite

Los flujos pueden separarse en dos regiones principales. La región próxima a la superficie está formada por una delgada capa límite donde se concentran los efectos viscosos y en la que puede simplificarse mucho el modelo matemático. Fuera de esta capa límite, se pueden despreciar los efectos de la viscosidad, y pueden emplearse las ecuaciones matemáticas más sencillas para flujos no viscosos.

La teoría de la capa límite ha hecho posible gran parte del desarrollo de las alas de los aviones modernos y del diseño de turbinas de gas y compresores.

d) Flujos compresibles

El interés por los flujos compresibles comenzó con el desarrollo de turbinas de vapor por el británico Parsons y el sueco Laval. En esos mecanismos se descubrió por primera vez el flujo rápido de vapor a través de tubos, y la necesidad de un diseño eficiente de turbinas llevó a una mejora del análisis de los flujos compresibles. El interés por los flujos de alta velocidad sobre superficies surgió de forma temprana en los estudios de balística,donde se necesitaba comprender el movimiento de los proyectiles.

Uno de los principios básicos del flujo compresible es que la densidad de un gas cambia cuando el gas se ve sometido a grandes cambios de velocidad y presión. Al mismo tiempo, su temperatura también cambia, lo que lleva a problemas de análisis más complejos. El comportamiento de flujo de un gas compresible depende de si la velocidad de flujo es mayor o menor que la velocidad del sonido.

El sonido es la propagación de una pequeña perturbación, u onda de presión, dentro de un fluido. Para un gas, la velocidad del sonido es proporcional a la raíz cuadrada de su temperatura absoluta. La velocidad del sonido en el aire a 20 °C (293 Kelvin en la escala absoluta), es de unos 344 metros por segundo. Si la velocidad de flujo es menor que la velocidad del sonido (flujo subsónico),las ondas de presión pueden transmitirse a través de todo el fluido y así adaptar el flujo que se dirige hacia un objeto. Por tanto, el flujo subsónico que se dirige hacia el ala de un avión se ajustará con cierta distancia de antelación para fluir suavemente sobre la superficie. En el flujo supersónico, las ondas de presión no pueden viajar corriente arriba para adaptar el flujo. Por ello, el aire que se dirige hacia el ala de un avión en vuelo supersónico no está preparado para la perturbación que va a causar el ala y tiene que cambiar de dirección repentinamente en la proximidad del ala, lo que conlleva una compresión intensa u onda de choque. El ruido asociado con el paso de esta onda de choque sobre los observadores situados en tierra constituye el estampido sónico de los aviones supersónicos. Frecuentemente se identifican los flujos supersónicos por su número de Mach, que es el cociente entre la velocidad de flujo y la velocidad del sonido. Por tanto, los flujos supersónicos tienen un número de Mach superior a 1.

Viscosidad

Propiedad de un fluido que tiende a oponerse a su flujo cuando se le aplica una fuerza. Los fluidos de alta viscosidad presentan una cierta resistencia a fluir; los fluidos de baja viscosidad fluyen con facilidad. La fuerza con la que una capa de fluido en movimiento arrastra consigo a las capas adyacentes de fluido determina su viscosidad, que se mide con un recipiente (viscosímetro) que tiene un orificio de tamaño conocido en el fondo. La velocidad con la que el fluido sale por el orificio es una medida de su viscosidad.

La viscosidad de un fluido disminuye con la reducción de densidad que tiene lugar al aumentar la temperatura. En un fluido menos denso hay menos moléculas por unidad de volumen que puedan transferir impulso desde la capa en movimiento hasta la capa estacionaria. Esto, a su vez, afecta a la velocidad de las distintas capas. El momento se transfiere con más dificultad entre las capas, y la viscosidad disminuye. En algunos líquidos, el aumento de la velocidad molecular compensa la reducción de la densidad. Los aceites de silicona, por ejemplo, cambian muy poco su tendencia a fluir cuando cambia la temperatura

 

Es muy complejo este tema pero interesante a su vez ya que se comprende mas la fuerza con la que interactua el agua en lo tubos o por ejemplo los rios o mares se hace calculo de cuan fuertes son y destructoras a su vez son entre mas temperatura exista menos viscosos son los liquidos o pesados y entre menos temperatura haya se encuentra de una manera muy diluida aunque su estado cambia a solido..

acustica

Hidrodinamica

LA HIDRODINÁMICA estudia la dinámica de fluídos no compresibles. Por extensión, dinámica de fluidos.

Ésta es la dinámica del agua: ya que el prefijo griego "hidro-" significa "agua". Aun así también incluye el estudio de la de otros fluidos. Para ello se considera entre otras cosas la velocidad, presión, flujo y gasto del fluido. Las aplicaciones de la hidrodinámica se encuentran en la ingeniería (diseño de canales, construcción de puertos, presas, en la fabricación de barcos, turbinas,etc.).

Las ecuaciones que describen la dinámica de estos fluidos son las ecuaciones de Navier-Stokes. Son la expresión matemática de la conservación de masa y de cantidad de movimiento.

En el caso de fluidos no viscosos, también llamados fluidos coloidales, se reducen a las ecuaciones de Euler. Daniel Bernoulli fue un matemático que realizó estudios de dinámica.

 

La Hidrodinamica es la que estudia el agua.y todo lo relacionado con esta, también nos enseña a medir; masa volumen y peso, principalmente utilizadas en la construcción de tuberías, canales, etc.

La Optica

La Optica

LA ÓPTICA (del griego optomai, ver) es la rama de la física que estudia el comportamiento de la luz, sus características y sus manifestaciones. Abarca el estudio de la reflexión, la refracción, las interferencias, la difracción, la formación de imágenes y la interacción de la luz con la materia. Estudia la luz, es decir como se comporta la luz ante la materia.

El comportamiento de la luz y la visión. Por medio de la visión podemos comunicarnos con el mundo exterior.