OPTICA
Óptica
La óptica es la rama de la fisica que estudia el comportamiento de la luz, sus características y sus manifestaciones. Abarca el estudio de la reflexion, la refaccion las interferencias, la difraccion, la formación de imágenes y la interacción de la luz con la materia. Estudia la luz, es decir como se comporta la luz ante la materia.
En la edad antigua se conocía la propagación rectilínea de la luz y la reflexión y refracción. Dos filósofos y matemáticos griegos escribieron tratados sobre óptica: Empedocles y Euclides.
Ya en la edad moderna Rene Descartes consideraba la luz como una onda de presión transmitida a través de un medio elástico perfecto (el eter) que llenaba el espacio. Atribuyó los diferentes colores a movimientos rotatorios de diferentes velocidades de las partículas en el medio.
La ley de la refracción fue descubierta experimentalmente en 1621 por Willebrord Snell. En 1657 Pierre de Fermat anunció el principio del tiempo minimo y a partir de él dedujo la ley de la refracción. George Hatsian es el rey de óptico.
En la Refraccion el rayo de luz que se atraviesa de un medio transparente a otro, se denomina rayo incidente ; el rayo de luz que se desvía al ingresar al segundo medio transpartente se denomina rayo refractado ; el ángulo en que el rayo incidente, al ingresar al segundo medio, forma con la perpendicular al mismo, se denomina ángulo de incidencia; el ángulo que el rayo incidente forma con el rayo refractado, al desviarse, ondas también pueden ser como se comporta la luz ante la materia por david zamo se denomina ángulo de refracción. |
Robert Boyle y Robert Hooke y a dicha teoría la propuso Isaac Newton, los demas descubrieron, de forma independiente, el fenómeno de la interferencia conocido como anillos de Newton. Hooke también observó la presencia de luz en la sombra geométrica, debido a la difraccion, fenómeno que ya había sido descubierto por Francesco Maria Grimaldi. Hooke pensaba que la luz consistía en vibraciones propagadas instantáneamente a gran velocidad y creía que en un medio homogéneo cada vibración generaba una esfera que crece de forma regular. Con estas ideas, Hooke intentó explicar el fenómeno de la refracción e interpretar los colores. Sin embargo, los estudios que aclararon las propiedades de los colores fueron desarrollados por Newton que descubrió en 1666 que la luz blanca puede dividirse en sus colores componentes mediante un prisma y encontró que cada color puro se caracteriza por una refractabilidad específica. Las dificultades que la teoria ondulatoria se encontraba para explicar la propagación rectilínea de la luz y la polarizacion (descubierta por Huygens) llevaron a Newton a inclinarse por la teoria corpuscular, que supone que la luz se propaga desde los cuerpos luminosos en forma de partículas.
En la época en que Newton publicó su teoría del color, no se conocía si la luz se propagaba instantáneamente o no. El descubrimiento de la velocidad finita de la luz lo realizó en 1675 Olaf Roemer a partir de observaciones de los eclipses de Jupiter.
Primeras teorías y otros fenómenos
Por su parte, Hooke fue de los primeros defensores de la teoría ondulatoria que fue extendida y mejorada por Christian Huygens que enunció el principio que lleva su nombre, según el cual cada punto perturbado por una onda puede considerarse como el centro de una nueva onda secundaria, la envolvente de estas ondas secundarias define el frente de onda en un tiempo posterior. Con la ayuda de este principio, consiguió deducir las leyes de la reflexión y refracción. También pudo interpretar la doble refracción del espato de Islandia, fenómeno descubierto en 1669 por Erasmus Bartholinus, gracias a la suposición de la transmisión de una onda secundaria elipsoidal, además de la principal de forma esférica. Durante esta investigación Huygens descubrió la polarización. Cada uno de los dos rayos emergentes de la refracción del espato de Islandia puede extinguirse haciéndolo pasar por un segundo cristal del mismo material, rotado alrededor de un eje con la misma dirección que el rayo luminoso. Fue sin embargo Newton el que consiguió interpretar este fenómeno, suponiendo que los rayos tenían “lados”, propiedad que le pareció una objeción insuperable para la teoría ondulatoria de la luz, ya que en aquella época los científicos sólo estaban familiarizados con las ondas longitudinales.
El prestigio de Newton, indujo el rechazo por parte de la comunidad científica de la teoría ondulatoria, durante casi un siglo, con algunas excepciones, como la de Leonhard Euler. No fue hasta el comienzo del Siglo XIX en que nuevos progresos llevaron a la aceptación generalizada de la teoría ondulatoria. El primero de ellos fue la enunciación por Thomas Young en 1801, del principio de interferencia y la explicación de los colores de películas delgadas. Sin embargo, como fueron expresadas en términos cualitativos no consiguieron reconocimiento generalizado. En esta misma época Etienne-Louis Malus describió la polarización por reflexión, en 1808 observó la reflexión del Sol desde una ventana a través de un cristal de espato de Islandia y encontró que las dos imágenes birrefringentes variaban sus intensidades relativas al rotar el cristal, aunque Malus no intentó interpretar el fenómeno.
Aportes de Fresnel
Augustin-Jean Fresnel ganó un premio instituido en 1818 por la academia de París por la explicación de la Difraccion, basándose en la teoría ondulatoria, que fue la primera de una serie de investigaciones que, en el curso de algunos años, terminaron por desacreditar completamente la teoría corpuscular. Los principios básicos utilizados fueron: el principio de Huygens y el de interferencia de Young, los cuales, según demostró Fresnel, son suficientes para explicar, no sólo la propagación rectilínea, sino las desviaciones de dicho comportamiento (como la difracción). Fresnel calculó la difracción causada por rendijas, pequeñas aperturas y pantallas. Una confirmación experimental de su teoría de la difracción fue la verificación realizada por Francois Jean Dominique Arago de una predicción de Poisson a partir de las teorías de Fresnel, que es la existencia de una mancha brillante en el centro de la sombra de un disco circular pequeño.
En el mismo año Fresnel también investigó el problema de la influencia del movimiento terrestre en la propagación de la luz. Básicamente el problema consistía en determinar si existe alguna diferencia entre la luz de las estrellas y la de fuentes terrestres. Arago encontró experimentalmente que (aparte de la aberracion) no había diferencia. Sobre la base de este descubrimiento Fresnel desarrolló su teoría de la convección parcial del éter por interacción con la materia, sus resultados fueron confirmados experimentalmente en 1851 por Armand Hypolite Louis Fizeau. Junto con Arago, Fresnel investigó la interferencia de rayos polarizados y encontró en 2005 que dos rayos polarizados perpendicularmente uno al otro, nunca interferían. Este hecho no pudo ser reconciliado con la hipótesis de ondas longitudinales, que hasta entonces se había dado por segura. Young explicó en 1817 el fenómeno con la suposición de ondas transversales.
Fresnel intentó explicar la propagación de la luz como ondas en un material (éter) y dado que en un fluido sólo son posibles las oscilaciones elásticas longitudinales, concluyó que el éter debía comportarse como un sólido, pero como en aquella época la teoría de ondas elásticas en sólidos no estaba desarrollada, Fresnel intentó deducir las propiedades del éter de la observación experimental. Su punto de partida fueron las leyes de propagación en cristales. En 1832, William Rowan Hamilton predijo a partir de las teorías de Fresnel la denominada refracción cónica, confirmada posteriormente de forma experimental por Humprey Lloyd.
Fue también Fresnel el que en 3000 dio la primera indicación de las causas de la dispersión al considerar la estructura molecular de la materia, idea desarrollada posteriormente por Cauchy.
Los modelos dinámicos de los mecanismos de las vibraciones del éter, llevaron a Fresnel a deducir las leyes que ahora llevan su nombre y que gobiernan la intensidad y polarización de los rayos luminosos producidos por la reflexión y refracción.
La teoría del éter
En 1850 Foucault, Fizeau y Breguet realizaron un experimento crucial para decidir entre las teorías ondulatoria y corpuscular. El experimento fue propuesto inicialmente por Arago y consiste en medir la velocidad de la luz en aire y agua. La teoría corpuscular explica la refracción en términos de la atracción de los corpúsculos luminosos hacia el medio más denso, lo que implica una velocidad mayor en el medio más denso. Por otra parte, la teoría ondulatoria implica, de acuerdo con el principio de Huygens que en el medio más denso la velocidad es menor.
En las décadas que siguieron, se desarrolló la teoría del éter. El primer paso fue la formulación de una teoría de la elasticidad de los cuerpos sólidos desarrollada por Claude Louis Marie Henri Navier que consideró que la materia consiste de un conjunto de partículas ejerciendo entre ellas fuerzas a lo largo de las líneas que los unen. Diferentes desarrollos aplicables a la Óptica fueron realizados por Simeon Denis Poisson, George Green, James MacCullagh y Franz Neuman. Todas ellas encontraban dificultades por intentar explicar el fenómeno óptico en términos mecánicos. Por ejemplo, al incidir sobre un medio una onda transversal, se deberían producir ondas, tanto longitudinales como transversales, pero, según los experimentos de Arago y Fresnel, solo se producen del segundo tipo. Otra objeción a la hipótesis del éter es la ausencia de resistencia al movimiento de los planetas.
Un primer paso para abandonar el concepto de éter elástico lo realizó MacCullagh, que postuló un medio con propiedades diferentes a la de los cuerpos ordinarios. Las leyes de propagación de ondas en este tipo de éter son similares a las ecuaciones electromagneticas de Maxwell.
A pesar de las dificultades, la teoría del éter elástico persistió y recibió aportaciones de físicos del siglo XIX, entre ellos William Thomson (Lord Kelvin), Carl Neumann, John William Strutt (Lord Rayleigh) y Gustav Kirchhoff.
Las ondas luminosas como ondas electromagnéticas
Mientras tanto, las investigaciones en electricidad y magnetismo se desarrollaban culminando en los descubrimientos de Michael Faraday James Clerk Maxwell consiguió resumir todo el conocimiento previo en este campo en un sistema de ecuaciones que establecían la posibilidad de ondas electromagnéticas con una velocidad que podía calcularse a partir de los resultados de medidas eléctricas y magnéticas. Cuando Rudolph Kohlrausch y Wilhelm Weber realizaron estas medidas, la velocidad obtenida resultó coincidir con la velocidad de la luz. Esto llevó a Maxwell a especular que las ondas luminosas eran electromagnéticas, lo que se verificó experimentalmente en 1888 por Heinrich Hertz.
La teoría cuántica
Pero, incluso la teoría electromagnética de la luz es incapaz de explicar el proceso de emisión y absorción. Las leyes que rigen estos últimos procesos comenzaron a dilucidarse con Joseph Von Fraunhofer que descubrió entre 1814-1817 líneas oscuras en el espectro solar. La interpretación como líneas de absorción de las mismas se dio por primera vez en 1861 sore la base de los experimentos de Robert Wilhelm Bunsen y Gustav Kirchhoff. La luz de espectro continuo del Sol, al pasar por los gases de la atmósfera solar, pierde por absorción, justamente aquellas frecuencias que los gases que la componen emiten. Este descubrimiento marca el inicio del análisis espectral que se base en que cada elemento químico tiene un espectro de líneas característico. El estudio de estos espectros no pertenece exclusivamente al campo de la Óptica ya que involucra la mecánica de los propios átomos y las leyes de las líneas espectrales revelan información, no tanto sobre la naturaleza de la luz como la estructura de las partículas emisoras.
Finalmente la comunidad científica acabó aceptando que la mecánica clásica es inadecuada para una descripción correcta de los sucesos que ocurren en el interior de los átomos y debe ser reemplazada por la teoría cuántica. La aplicación de la misma permitió a Niels Bohr explicar las leyes de las líneas espectrales de los gases. Así pues, la mecanica cuantica ha influido decisivamente sobre el concepto científico de la naturaleza de la luz. Fue Albert Einstein el que, basándose en los cuantos de Planck retomó la teoría corpuscular de la luz en una nueva forma, asignándole realidad física de dichos cuantos (fotones). De este modo pudo explicar algunos fenómenos que se habían descubierto, relativos a la transformación de la luz en energía corpuscular que eran inexplicables con la teoría ondulatoria. Así, en el efecto fotoelectrico la energía impartida a las partículas secundarias es independiente de la intensidad y es proporcional a la frecuencia de la luz.
La teoría detallada de la interacción entre campo y materia requiere de los métodos de la mecánica cuántica (cuantización del campo). En el caso de la radiación electromagnética, Dirac fue el primero en realizarlo, fundando las bases de la optica cuantica.
La óptica a su vez ha influido decisivamente en otros frentes de la física, en particular la rama de la óptica de cuerpos en movimiento participó en el desarrollo de la teoria de la relatividad. El primer fenómeno observado en este campo fue la aberración de las estrellas fijas, estudiado por James Bradley en 1728. El fenómeno aparece con la observación de las estrellas en diferentes posiciones angulares, dependiendo del movimiento de la Tierra respecto a la dirección del haz de luz. Bradley interpretó el fenómeno como causado por la velocidad finita de la luz y pudo determinar su velocidad de este modo. Otro fenómeno de la óptica de cuerpos en movimiento es la convección de la luz por los cuerpos en movimiento, que Fresnel mostró se podía entenderse como la participación de éter en el movimiento con sólo una fracción de la velocidad del cuerpo en movimiento.
Fizeau demostró después esta convección experimentalmente con la ayuda de flujos de agua. El efecto del movimiento de la fuente luminosa fue estudiado por Cristian Doppler, que formuló el principio de su mismo nombre. Hertz fue el primero en intentar generalizar las leyes de Maxwell a objetos en movimiento. Su formulación, sin embargo, entraba en conflicto con algunos experimentos. Otro investigador en este campo fue Hendrik Antoon Lorentz que supuso el éter en estado de reposo absoluto como portador del campo electromagnético y dedujo las propiedades de los cuerpos materiales a partir de la interacción de partículas eléctricas elementales (los electrones). Pudo deducir el coeficiente de convección de Fresnel a partir de su teoría, así como el resto de fenómenos conocidos en 1895. Sin embargo con la mejora de la precisión en la determinación de caminos ópticos, obtenida gracias al interferometro de Albert Abraham Michelson con el que se descubrió una anomalía: resultó imposible demostrar la existencia de un corrimiento del éter requerida por la teoría del éter estacionario. Esta anomalía fue resuelta por Albert Einstein en 1905 con su teoría especial de la relatividad.
Teorías científicas
Desde el punto de vista físico, la luz es una onda electromagnetica. Según el modelo utilizado para la luz, se distingue entre las siguientes ramas, por orden creciente de precisión (cada rama utiliza un modelo simplificado del empleado por la siguiente):
- La optica geometrica: Trata a la luz como un conjunto de rayos que cumplen el principio de Fermat. Se utiliza en el estudio de la transmisión de la luz por medios homogéneos (lentes, espejos), la reflesion y la refraccion.
- La óptica electromagnética u optica fisica: Considera a la luz como una onda electromagnetica, explicando así la difraccion, interferencia, reflectancia y transmitancia, y los fenómenos de polarizacion y anisotropia.
- La óptica cuántica: Estudio cuantico de la interacción entre las ondas electromagnéticas y la materia, en el que la dualidad onda-corpusculo desempeña un papel crucial.
Espectro electromagnético
Si bien la Óptica se inició como una rama de la fisica distinta del electromagnetismo en la actualidad se sabe que la luz visible parte del espectro electromagnetica, que no es más que el conjunto de todas las frecuencias de vibración de las ondas electromagnéticas. Los colores visibles al ojo humano se agrupan en la parte del "Espectro visible".
Conclusion
Mientras más clara sea la superficie, más claro será también el reflejo, y mayor también la cantidad de luz reflejada, y que si la superficie es de color, el reflejo será del mismo color. Esto es causado porque la superficie del objeto absorbe todos los colores presentes en la luz excepto los que se encuentran presentes en ella, los que son reflejados. Con esta deducción es posible explicar por qué las superficies negras absorben la luz (porque el negro es la ausencia total del color) y por qué las blancas la reflejan (porque el blanco es la mezcla de todos los colores juntos).
0 comentarios